Transannular Formation of 1,10-Dimethoxy-4-azatricyclo[6,2,2,0^{4,8}]dodeca-9,11-dien-3-one

By YOHMEI OKUNO, KEIJI HEMMI, and OSAMU YONEMITSU*

(Faculty of Pharmaceutical Sciences, Hokkaido University, Sapporo, Japan)

Summary Photolysis of N-chloroacetyl-3.4-dimethoxyphenylpropylamine (1) gave the eight-membered lactam (2) and the novel aza-azulene derivatives (4 and 5); the nine-membered lactam (9) was synthesized similarly from N-chloroacetyl-3,4-dimethoxyphenylbutylamine (8).

THE photocyclizations of N-chloroacetylphenethylamines¹ have now been extended to the propylamine (1) and butylamine (8) homologues.

When an aqueous ethanolic solution of (1) was irradiated with a high-pressure mercury lamp (100 W) under nitrogen for 3 h, the benzazocinone (2) (8%), m.p. 215°, was isolated. The structure of (2) was confirmed by analogy with that of 7,8-dimethoxy-4,5-dihydro-1H-[3]benzazepin-2(3H)-one² by mass and n.m.r. spectroscopy $[m/e, 235 (M^+), 218, and 165;$ δ (CDCl₃) 6.84 (1H, s), 6.60 (1H, s), 6.25 (1H broad), 3.86 (3H, s), 3.84 (3H, s), 3.20-3.64 (4H, m), 2.76-3.02 (2H, m), and 1.60-2.10 p.p.m. (2H, m)].

Another crystalline product, m.p. 122-124°, isolated by chromatography (silica-gel), has a carbonyl group (1730 cm^{-1}) in addition to the original amide (1625 cm^{-1}) and no NH absorption in the i.r. spectrum. This compound must be a ketone because it forms a 2,4-dinitrophenylhydrazone and is easily reduced to the alcohol (6) by NaBH₄ in methanol. In the u.v. spectrum no maximum above 220 nm is observed. The composition of (5) was determined by mass spectrometry [221 (M+), 205, 178, and 163, C₁₂H₁₅NO₈ indicates loss of HCl and CH₂ from (1)]. The n.m.r. spectrum [δ (CDCl₃) 6·32 (2H, s), 3·46-3·77 (2H, m), 3·37 (3H, s), 2.72 (2H, s), 2.63 (2H, s), and 1.75-2.44 p.p.m. (4H, m)], shows two vinyl protons and one methoxy-group. The structure of the dione (5) is suggested by mechanistic considerations and was confirmed by the isolation of the intermediates (3) and (4).

In the presence of $NaHCO_3$ photolysis of (1) gave (2) (8%) and (4) (18%), extractable into ethyl acetate, and (3) (6%) which remained in the aqueous layer. The bicyclo-[6,2,2]dodecadienone (3) has chemical and spectral properties similar to those of the [5,2,2]-analogue (7),³ though the mass spectrum of (3) is identical with that of (4), indicative of the easy pyrolysis of (3) to (4). On a small scale, this transannular dehydrative cyclization can be brought about easily and quantitatively by brief heating at 200°. N.m.r. data, δ 6.30 (2H, s) and 4.96 (1H, s), (both vinyl protons) and 3.61 and 3.39 (both MeO) and the mass spectrum,235 (M^+) , 220, and 204 (base), support the structure of the novel tricyclic aza-azulene derivative as 1,10-dimethoxy-4azatricyclo[6,2,2,04,8]dodeca-9,11-dien-3-one (4), m.p. 138-139°. This enol-ether was easily hydrolysed to the ketone (5) by dilute acid.

Photolysis of the homologue (1) may again proceed by electron-transfer from the aromatic chromophore to the carbon-chlorine bond^{1,4} to yield (2) and (3); the latter is transformed into the tricycles (4) and (5) by secondary thermal reactions.

Photolysis of the phenylbutylamine (8) under the same conditions gave the benzazoninone (9) (13%), a ninemembered lactam, m.p. 178-179° [m/e, 249 (M+), 232, and 165; δ (CDCl₃) 6.95 (1H, s), 6.58 (1H, s), 6.40br (1H), 3.83 (6H, s), 3.60 (2H, s), 3.20-3.55 (2H, m), 2.55-2.86 (2H, m), and 1.30-1.77 (4H, m)].

We thank Dr. B. Witkop for helpful suggestions and the Naito Foundation for financial support.

(Received, April 19th, 1971; Com. 592.)

- ¹ O. Yonemitsu, N. Nakai, Y. Okuno, and H. Kemmi, Proc. Nat. Acad. Sci. U.S.A., in the press.
- Yonemitsu, Y. Okuno, Y. Kanaoka, and B Witkop, J. Amer. Chem. Soc., 1970, 92, 5686.
 O. Yonemitsu, H. Nakai, Y. Kanaoka, I. L. Karle, and B. Witkop, J. Amer. Chem. Soc., 1970, 92, 5691.
- ⁴ M. T. McCall, G. S. Hammond, O. Yonemitsu, and B. Witkop, J. Amer. Chem. Soc., 1970, 92, 6991.